Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 42(12): 3134-3143, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38582691

RESUMO

OBJECTIVE: This study investigated the immunogenicity and safety of a pentavalent vaccine Gobik (DPT-IPV-Haemophilus influenzae type b [Hib]) in healthy Japanese infants aged ≥ 2 and < 43 months using a concomitant vaccination with ActHIB® (Hib) and Tetrabik (DPT-IPV) as a comparator. METHODS: This study was conducted as a phase 3, multicenter, active controlled, assessor-blinded, randomized, parallel-group study. Participants received a total of 4 subcutaneous doses (3 primary immunization doses and a booster dose) of either the experimental drug (DPT-IPV-Hib) or the active comparator (Hib + DPT-IPV). The primary endpoints were the anti-PRP antibody prevalence rate with ≥ 1 µg/mL, and the antibody prevalence rates against pertussis, diphtheria toxin, tetanus toxin, and attenuated poliovirus after the primary immunization. RESULTS: In 267 randomized participants (133 in the DPT-IPV-Hib group and 134 in the Hib + DPT-IPV group), the antibody prevalence rates after the primary immunization in both groups were 100.0 % and 88.7 % for anti-PRP antibody with ≥ 1 µg/mL, 99.2 % and 98.5 % against diphtheria toxin, and 100.0 % and 99.2 % against tetanus toxin, respectively. The antibody prevalence rates against pertussis and attenuated poliovirus were 100.0 % in both groups. The non-inferiority of the DPT-IPV-Hib group to the Hib + DPT-IPV group was verified for all measured antibodies. In both groups, all the GMTs of antibodies after the primary immunization were higher than those before the first dose, and those after the booster dose were higher than those after the primary immunization. No safety issues were identified. CONCLUSION: A single-agent Gobik, the first DPT-IPV-Hib pentavalent vaccine approved in Japan, was confirmed to simultaneously provide primary and booster immunizations against Hib infection, pertussis, diphtheria, tetanus, and poliomyelitis and to have a preventive effect and safety comparable to concomitant vaccination with Hib (ActHIB®) and DPT-IPV quadrivalent vaccine (Tetrabik).


Assuntos
Difteria , Vacinas Anti-Haemophilus , Haemophilus influenzae tipo b , Poliomielite , Tétano , Coqueluche , Lactente , Humanos , Japão , Tétano/prevenção & controle , Difteria/prevenção & controle , Coqueluche/prevenção & controle , Toxina Tetânica , Toxina Diftérica , Vacina Antipólio de Vírus Inativado , Esquemas de Imunização , Anticorpos Antibacterianos , Vacina contra Difteria, Tétano e Coqueluche , Vacinas Combinadas , Poliomielite/prevenção & controle , Vacinas Conjugadas
2.
Genes (Basel) ; 15(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38540372

RESUMO

In newborn screening (NBS), it is important to consider the availability of multiplex assays or other tests that can be integrated into existing systems when attempting to implement NBS for new target diseases. Recent developments in innovative testing technology have made it possible to simultaneously screen for severe primary immunodeficiency (PID) and spinal muscular atrophy (SMA) using quantitative real-time polymerase chain reaction (qPCR) assays. We describe our experience of optional NBS for severe PID and SMA in Osaka, Japan. A multiplex TaqMan qPCR assay was used for the optional NBS program. The assay was able to quantify the levels of T-cell receptor excision circles and kappa-deleting recombination excision circles, which is useful for severe combined immunodeficiency and B-cell deficiency screening, and can simultaneously detect the homozygous deletion of SMN1 exon 7, which is useful for NBS for SMA. In total, 105,419 newborns were eligible for the optional NBS program between 1 August 2020 and 31 August 2023. A case each of X-linked agammaglobulinemia and SMA were diagnosed through the optional NBS and treated at early stages (before symptoms appeared). Our results show how multiplex PCR-based NBS can benefit large-scale NBS implementation projects for new target diseases.


Assuntos
Atrofia Muscular Espinal , Triagem Neonatal , Recém-Nascido , Humanos , Triagem Neonatal/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Homozigoto , Japão , Deleção de Sequência , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética
3.
Mol Brain ; 16(1): 61, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488606

RESUMO

Changes in neural activity induced by learning and novel environments have been reported to lead to the formation of new synapses in the adult brain. However, the underlying molecular mechanism is not well understood. Here, we show that Purkinje cells (PCs), which have established adult-type monosynaptic innervation by climbing fibers (CFs) after elimination of weak CFs during development, can be reinnervated by multiple CFs by increased expression of the synaptic organizer C1ql1 in CFs or Bai3, a receptor for C1ql1, in PCs. In the adult cerebellum, CFs are known to have transverse branches that run in a mediolateral direction without forming synapses with PCs. Electrophysiological, Ca2+-imaging and immunohistochemical studies showed that overexpression of C1ql1 or Bai3 caused these CF transverse branches to elongate and synapse on the distal dendrites of mature PCs. Mature PCs were also reinnervated by multiple CFs when the glutamate receptor GluD2, which is essential for the maintenance of synapses between granule cells and PCs, was deleted. Interestingly, the effect of GluD2 knockout was not observed in Bai3 knockout PCs. In addition, C1ql1 levels were significantly upregulated in CFs of GluD2 knockout mice, suggesting that endogenous, not overexpressed, C1ql1-Bai3 signaling could regulate the reinnervation of mature PCs by CFs. Furthermore, the effects of C1ql1 and Bai3 overexpression required neuronal activity in the PC and CF, respectively. C1ql1 immunoreactivity at CF-PC synapses was reduced when the neuronal activity of CFs was suppressed. These results suggest that C1ql1-Bai3 signaling may mediate CF synaptogenesis in mature PCs, potentially in concert with neuronal activity.


Assuntos
Neurônios , Células de Purkinje , Animais , Camundongos , Dendritos , Cerebelo , Encéfalo , Complemento C1q
4.
Brain Dev ; 45(7): 363-371, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36973114

RESUMO

OBJECTIVE: This study aimed to establish an optional newborn screening program for spinal muscular atrophy (SMA-NBS) in Osaka. METHODS: A multiplex TaqMan real-time quantitative polymerase chain reaction assay was used to screen for SMA. Dried blood spot samples obtained for the optional NBS program for severe combined immunodeficiency, which covers about 50% of the newborns in Osaka, were used. To obtain informed consent, participating obstetricians provided information about the optional NBS program to all parents by giving leaflets to prospective parents and uploading the information onto the internet. We prepared a workflow so that babies that were diagnosed with SMA through the NBS could be treated immediately. RESULTS: From 1 February 2021 to 30 September 2021, 22,951 newborns were screened for SMA. All of them tested negative for survival motor neuron (SMN)1 deletion, and there were no false-positives. Based on these results, an SMA-NBS program was established in Osaka and included in the optional NBS programs run in Osaka from 1 October 2021. A positive baby was found by screening, diagnosed with SMA (the baby possessed 3 copies of the SMN2 gene and was pre-symptomatic), and treated immediately. CONCLUSION: The workflow of the Osaka SMA-NBS program was confirmed to be useful for babies with SMA.


Assuntos
Atrofia Muscular Espinal , Triagem Neonatal , Humanos , Recém-Nascido , População do Leste Asiático , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Triagem Neonatal/métodos , Projetos Piloto , Estudos Prospectivos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Japão
5.
Am J Med Genet A ; 185(10): 3092-3098, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34042275

RESUMO

Angelman syndrome is a neurodevelopmental disorder characterized by intellectual disability (ID), a distinctive gait pattern, abnormal behaviors, severe impairment in language development, and characteristic facial features. Most cases are caused by the absence of a maternal contribution to the imprinted region on chromosome 15q11-q13. Here, we present the first reported case of a 3-year-old boy with an atypical phenotype of Angelman syndrome due to uniparental isodisomy with two recessive homozygous pathogenic variants: in HERC2 and AP3B2. Known phenotypes related to HERC2 and AP3B2 include ID and early infantile epileptic encephalopathy, respectively. The patient had severe global developmental delay and profound ID and showed a happy demeanor, stereotypic laughter, and hand-flapping movements, but also irritability. Craniofacial dysmorphic features, including brachycephaly, strabismus, wide ala nasi, short philtrum, wide open mouth, and slight hypopigmentation were seen. Progressive microcephaly was noted. Magnetic resonance imaging of the brain showed delayed myelination and cerebral atrophy. Trio whole exome sequencing and CGH-SNP array analysis revealed paternal uniparental isodisomy of chromosome 15 and two coexisting recessive diseases resulting from homozygous HERC2 and AP3B2 pathogenic variants. The pathogenic variant in HERC2 was inherited from his heterozygous-carrier father, and the variant in AP3B2 was de novo. We suppose that these unusual features were the combination of the effect of three concomitant disorders.


Assuntos
Complexo 3 de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Síndrome de Angelman/genética , Deficiência Intelectual/genética , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/diagnóstico , Síndrome de Angelman/patologia , Pré-Escolar , Cromossomos Humanos Par 15/genética , Predisposição Genética para Doença , Homozigoto , Humanos , Deficiência Intelectual/patologia , Masculino , Fenótipo , Dissomia Uniparental/genética , Sequenciamento do Exoma
6.
Science ; 369(6507)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32855309

RESUMO

Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory-inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer's disease, and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits.


Assuntos
Proteína C-Reativa/farmacologia , Proteínas do Tecido Nervoso/farmacologia , Vias Neurais/efeitos dos fármacos , Precursores de Proteínas/farmacologia , Receptores de AMPA/metabolismo , Proteínas Recombinantes/farmacologia , Sinapses/efeitos dos fármacos , Doença de Alzheimer/terapia , Animais , Proteína C-Reativa/química , Proteína C-Reativa/uso terapêutico , Ataxia Cerebelar/terapia , Modelos Animais de Doenças , Células HEK293 , Hipocampo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/uso terapêutico , Domínios Proteicos , Precursores de Proteínas/química , Precursores de Proteínas/uso terapêutico , Receptores de Glutamato/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/fisiologia
7.
J Biol Chem ; 295(27): 9244-9262, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32434929

RESUMO

Calsyntenin-3 (Clstn3) is a postsynaptic adhesion molecule that induces presynaptic differentiation via presynaptic neurexins (Nrxns), but whether Nrxns directly bind to Clstn3 has been a matter of debate. Here, using LC-MS/MS-based protein analysis, confocal microscopy, RNAscope assays, and electrophysiological recordings, we show that ß-Nrxns directly interact via their LNS domain with Clstn3 and Clstn3 cadherin domains. Expression of splice site 4 (SS4) insert-positive ß-Nrxn variants, but not insert-negative variants, reversed the impaired Clstn3 synaptogenic activity observed in Nrxn-deficient neurons. Consistently, Clstn3 selectively formed complexes with SS4-positive Nrxns in vivo Neuron-specific Clstn3 deletion caused significant reductions in number of excitatory synaptic inputs. Moreover, expression of Clstn3 cadherin domains in CA1 neurons of Clstn3 conditional knockout mice rescued structural deficits in excitatory synapses, especially within the stratum radiatum layer. Collectively, our results suggest that Clstn3 links to SS4-positive Nrxns to induce presynaptic differentiation and orchestrate excitatory synapse development in specific hippocampal neural circuits, including Schaffer collateral afferents.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Animais , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Cromatografia Líquida/métodos , Hipocampo/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Proteínas do Tecido Nervoso/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Espectrometria de Massas em Tandem/métodos
8.
Cerebellum ; 17(6): 709-721, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30046996

RESUMO

Synapses are precisely established, maintained, and modified throughout life by molecules called synaptic organizers, which include neurexins and neuroligins (Nlgn). Despite the importance of synaptic organizers in defining functions of neuronal circuits, the cellular and subcellular localization of many synaptic organizers has remained largely elusive because of the paucity of specific antibodies for immunohistochemical studies. In the present study, rather than raising specific antibodies, we generated knock-in mice in which a hemagglutinin (HA) epitope was inserted in the Nlgn1 gene. We have achieved high-throughput and precise gene editing by delivering the CRISPR/Cas9 system into zygotes. Using HA-Nlgn1 mice, we found that HA-Nlgn1 was enriched at synapses between parallel fibers and molecular layer interneurons (MLIs) and the glomeruli, in which mossy fiber terminals synapse onto granule cell dendrites. HA immunoreactivity was colocalized with postsynaptic density 95 at these synapses, indicating that endogenous Nlgn1 is localized at excitatory postsynaptic sites. In contrast, HA-Nlgn1 signals were very weak in dendrites and somata of Purkinje cells. Interestingly, HA-immunoreactivities were also observed in the pinceau, a specialized structure formed by MLI axons and astrocytes. HA-immunoreactivities in the pinceau were significantly reduced by knockdown of Nlgn1 in MLIs, indicating that in addition to postsynaptic sites, Nlgn1 is also localized at MLI axons. Our results indicate that epitope-tagging by electroporation-based gene editing with CRISPR/Cas9 is a viable and powerful method for mapping endogenous synaptic organizers with subcellular resolution, without the need for specific antibodies for each protein.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Cerebelo/citologia , Cerebelo/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Sistemas CRISPR-Cas , Moléculas de Adesão Celular Neuronais/genética , Epitopos , Técnicas de Silenciamento de Genes , Engenharia Genética , Células HEK293 , Hemaglutininas/genética , Hemaglutininas/imunologia , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Sinapses/metabolismo
10.
Hum Genome Var ; 4: 16045, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28144446

RESUMO

Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B, thus diagnosing this patient with Cabezas syndrome.

11.
Neurosci Res ; 116: 46-53, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27845167

RESUMO

Several C1q family members, related to the C1q complement component are extensively expressed in the central nervous system. Cbln1, which belongs to the Cbln subfamily of C1q proteins and released from cerebellar granule cells, plays an indispensable role in the synapse formation and function at parallel fiber-Purkinje cell synapses. This is achieved by formation of a trans-synaptic tripartite complex which is composed of one unit of the Cbln1 hexamer, monomeric neurexin (NRX) containing a splice site 4 insertion at presynaptic terminals and the postsynaptic GluD2 dimers. Recently an increasing number of soluble or transmembrane proteins have been identified to bind directly to the amino-terminal domains of iGluR and regulate the recruitment and function of iGluRs at synapses. Especially at mossy fiber (MF)-CA3 synapses in the hippocampus, postsynaptic kainate-type glutamate receptors (KARs) are involved in synaptic network activity through their characteristic channel kinetics. C1ql2 and C1ql3, which belong to the C1q-like subfamily of C1q proteins, are produced by MFs and serve as extracellular organizers to recruit functional postsynaptic KAR complexes at MF-CA3 synapses via binding to the amino-terminal domains of GluK2 and GluK4 KAR subunits. In addition, C1ql2 and C1ql3 directly bind to NRX3 containing sequences encoded by exon 25b insertion at splice site 5. In the present review, we highlighted the generality of the strategy by tripartite complex formation of the specific type of NRX and iGluR via C1q family members.


Assuntos
Encéfalo/metabolismo , Complemento C1q/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Sinapses/metabolismo , Animais , Região CA3 Hipocampal/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores de Ácido Caínico/metabolismo
12.
Science ; 353(6296): 295-9, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418511

RESUMO

Ionotropic glutamate receptor (iGluR) family members are integrated into supramolecular complexes that modulate their location and function at excitatory synapses. However, a lack of structural information beyond isolated receptors or fragments thereof currently limits the mechanistic understanding of physiological iGluR signaling. Here, we report structural and functional analyses of the prototypical molecular bridge linking postsynaptic iGluR δ2 (GluD2) and presynaptic ß-neurexin 1 (ß-NRX1) via Cbln1, a C1q-like synaptic organizer. We show how Cbln1 hexamers "anchor" GluD2 amino-terminal domain dimers to monomeric ß-NRX1. This arrangement promotes synaptogenesis and is essential for D: -serine-dependent GluD2 signaling in vivo, which underlies long-term depression of cerebellar parallel fiber-Purkinje cell (PF-PC) synapses and motor coordination in developing mice. These results lead to a model where protein and small-molecule ligands synergistically control synaptic iGluR function.


Assuntos
Depressão Sináptica de Longo Prazo , Proteínas do Tecido Nervoso/química , Neurogênese , Precursores de Proteínas/química , Receptores de Glutamato/química , Sinapses/fisiologia , Animais , Ligantes , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Multimerização Proteica , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Receptores de Glutamato/metabolismo , Transdução de Sinais , Sinapses/metabolismo
13.
Neuron ; 90(4): 752-67, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27133466

RESUMO

Postsynaptic kainate-type glutamate receptors (KARs) regulate synaptic network activity through their slow channel kinetics, most prominently at mossy fiber (MF)-CA3 synapses in the hippocampus. Nevertheless, how KARs cluster and function at these synapses has been unclear. Here, we show that C1q-like proteins C1ql2 and C1ql3, produced by MFs, serve as extracellular organizers to recruit functional postsynaptic KAR complexes to the CA3 pyramidal neurons. C1ql2 and C1ql3 specifically bound the amino-terminal domains of postsynaptic GluK2 and GluK4 KAR subunits and the presynaptic neurexin 3 containing a specific sequence in vitro. In C1ql2/3 double-null mice, CA3 synaptic responses lost the slow, KAR-mediated components. Furthermore, despite induction of MF sprouting in a temporal lobe epilepsy model, KARs were not recruited to postsynaptic sites in C1ql2/3 double-null mice, leading to reduced recurrent circuit activities. C1q family proteins, broadly expressed, are likely to modulate KAR function throughout the brain and represent promising antiepileptic targets.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Células Piramidais/metabolismo , Receptores de Ácido Caínico/metabolismo , Sinapses/metabolismo , Animais , Ácido Glutâmico/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Knockout , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Sinapses/genética
14.
Biochem J ; 469(3): 445-54, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26205497

RESUMO

Insulin-stimulated glucose uptake in skeletal muscle is mediated by the translocation of the glucose transporter GLUT4 from intracellular storage sites to the plasma membrane. The small GTPase Rac1 has been implicated in this insulin signalling, but the mechanism whereby Rac1 stimulates GLUT4 translocation remains obscure. In the present study, we examined the role of the small GTPase RalA downstream of Rac1 in skeletal muscle fibres isolated from genetically modified mice. A dominant-negative mutant of RalA, when ectopically overexpressed, significantly reduced GLUT4 translocation in response to insulin or either one of constitutively activated mutants of Rac1 and its upstream regulators, including the guanine-nucleotide-exchange factor FLJ00068, the protein kinase Akt2 and phosphoinositide 3-kinase. Constitutively activated Rac1 also failed to induce GLUT4 translocation in mouse skeletal muscle fibres in which the expression of RalA was abrogated by specific siRNA molecules. Furthermore, we applied a novel approach to detect the activated form of RalA in situ by immunofluorescence microscopy of mouse skeletal muscle fibres, demonstrating that constitutively activated mutants of Rac1 and its upstream regulators as well as insulin indeed cause the activation of RalA. Notably, this RalA activation was remarkably impaired in rac1-deficient skeletal muscle fibres. Taken together, these results provide evidence that RalA is indeed activated and involved in the regulation of GLUT4 translocation in response to insulin downstream of Rac1 in mouse skeletal muscle.


Assuntos
Insulina/metabolismo , Músculo Esquelético/enzimologia , Neuropeptídeos/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Ativação Enzimática , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Neuropeptídeos/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/genética
15.
Neuron ; 85(2): 316-29, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25611509

RESUMO

Neuronal networks are dynamically modified by selective synapse pruning during development and adulthood. However, how certain connections win the competition with others and are subsequently maintained is not fully understood. Here, we show that C1ql1, a member of the C1q family of proteins, is provided by climbing fibers (CFs) and serves as a crucial anterograde signal to determine and maintain the single-winner CF in the mouse cerebellum throughout development and adulthood. C1ql1 specifically binds to the brain-specific angiogenesis inhibitor 3 (Bai3), which is a member of the cell-adhesion G-protein-coupled receptor family and expressed on postsynaptic Purkinje cells. C1ql1-Bai3 signaling is required for motor learning but not for gross motor performance or coordination. Because related family members of C1ql1 and Bai3 are expressed in various brain regions, the mechanism described here likely applies to synapse formation, maintenance, and function in multiple neuronal circuits essential for important brain functions.


Assuntos
Cerebelo/metabolismo , Complemento C1q/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Animais , Cerebelo/citologia , Aprendizagem , Camundongos , Atividade Motora
16.
J Neurosci ; 34(22): 7412-24, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24872547

RESUMO

Of the two members of the δ subfamily of ionotropic glutamate receptors, GluD2 is exclusively expressed at parallel fiber-Purkinje cell (PF-PC) synapses in the cerebellum and regulates their structural and functional connectivity. However, little is known to date regarding cellular and synaptic expression of GluD1 and its role in synaptic circuit formation. In the present study, we investigated this issue by producing specific and sensitive histochemical probes for GluD1 and analyzing cerebellar synaptic circuits in GluD1-knock-out mice. GluD1 was widely expressed in the adult mouse brain, with high levels in higher brain regions, including the cerebral cortex, striatum, limbic regions (hippocampus, nucleus accumbens, lateral septum, bed nucleus stria terminalis, lateral habenula, and central nucleus of the amygdala), and cerebellar cortex. In the cerebellar cortex, GluD1 mRNA was expressed at the highest level in molecular layer interneurons and its immunoreactivity was concentrated at PF synapses on interneuron somata. In GluD1-knock-out mice, the density of PF synapses on interneuron somata was significantly reduced and the size and number of interneurons were significantly diminished. Therefore, GluD1 is common to GluD2 in expression at PF synapses, but distinct from GluD2 in neuronal expression in the cerebellar cortex; that is, GluD1 in interneurons and GluD2 in PCs. Furthermore, GluD1 regulates the connectivity of PF-interneuron synapses and promotes the differentiation and/or survival of molecular layer interneurons. These results suggest that GluD1 works in concert with GluD2 for the construction of cerebellar synaptic wiring through distinct neuronal and synaptic expressions and also their shared synapse-connecting function.


Assuntos
Química Encefálica/fisiologia , Cerebelo/fisiologia , Regulação da Expressão Gênica/fisiologia , Interneurônios/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Receptores de Glutamato/biossíntese , Sinapses/fisiologia , Animais , Diferenciação Celular/fisiologia , Cerebelo/ultraestrutura , Glutamato Desidrogenase , Células HEK293 , Humanos , Interneurônios/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Nervosas Mielinizadas/ultraestrutura , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura , Receptores de Glutamato/genética , Receptores de Glutamato/fisiologia , Sinapses/ultraestrutura
17.
Neuron ; 76(3): 549-64, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23141067

RESUMO

Differentiation of pre- and postsynaptic sites is coordinated by reciprocal interaction across synaptic clefts. At parallel fiber (PF)-Purkinje cell (PC) synapses, dendritic spines are autonomously formed without PF influence. However, little is known about how presynaptic structural changes are induced and how they lead to differentiation of mature synapses. Here, we show that Cbln1 released from PFs induces dynamic structural changes in PFs by a mechanism that depends on postsynaptic glutamate receptor delta2 (GluD2) and presynaptic neurexin (Nrx). Time-lapse imaging in organotypic culture and ultrastructural analyses in vivo revealed that Nrx-Cbln1-GluD2 signaling induces PF protrusions that often formed circular structures and encapsulated PC spines. Such structural changes in PFs were associated with the accumulation of synaptic vesicles and GluD2, leading to formation of mature synapses. Thus, PF protrusions triggered by Nrx-Cbln1-GluD2 signaling may promote bidirectional maturation of PF-PC synapses by a positive feedback mechanism.


Assuntos
Axônios/metabolismo , Cerebelo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Glutamato/metabolismo , Sinapses/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Células Cultivadas , Cerebelo/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia
18.
Cerebellum ; 11(1): 78-84, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20535596

RESUMO

Cerebellin was originally discovered as a Purkinje cell-specific peptide more than two decades ago. Later, its precursor protein precerebellin (Cbln1) was found to be produced in cerebellar granule cells. It has become increasingly clear that although the cerebellin peptide may have certain functions, Cbln1 is an actual signaling molecule that belongs to the C1q family. However, the precise function of Cbln1 has been unresolved. Cbln1 is released from granule cells, and disruption of the cbln1 gene in mice causes a severe reduction in the number of synapses between Purkinje cells and parallel fibers (PFs; axons of granule cells) and results in cerebellar ataxia. The glutamate receptor δ2 (GluD2) is highly expressed on Purkinje cells' dendritic spines which make synapses with PFs. Although GluD2 was identified as a member of the ionotropic glutamate receptors more than 15 years ago, it has been referred to as an orphan receptor because its endogenous ligands are unclear. Interestingly, GluD2-null mice phenocopy cbln1-null mice precisely. Cbln1 and GluD2 have therefore been thought to participate in a common signaling pathway that is required for the formation of PF synapses. We recently established a direct ligand-receptor relationship between Cbln1 and GluD2. The Cbln1-GluD2 complex is located at the cleft of PF-Purkinje cell synapses and bidirectionally regulates both presynaptic and postsynaptic differentiation.


Assuntos
Córtex Cerebelar/crescimento & desenvolvimento , Canais Iônicos de Abertura Ativada por Ligante/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Precursores de Proteínas/fisiologia , Receptores de Glutamato/fisiologia , Animais , Diferenciação Celular/fisiologia , Córtex Cerebelar/citologia , Córtex Cerebelar/metabolismo , Humanos , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Ligantes , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Precursores de Proteínas/metabolismo , Receptores de Glutamato/metabolismo , Transmissão Sináptica/fisiologia
19.
Am J Med Genet A ; 155A(8): 1949-58, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21744491

RESUMO

Loss-of-function mutations in CHST14, dermatan 4-O-sulfotransferase 1 (D4ST1) deficiency, have recently been found to cause adducted thumb-clubfoot syndrome (ATCS; OMIM#601776) and a new type of Ehlers-Danlos syndrome (EDS) coined as EDS Kosho Type (EDSKT) [Miyake et al., 2010], as well as a subset of kyphoscoliosis type EDS without lysyl hydroxylase deficiency (EDS VIB) coined as musculocontractural EDS (MCEDS) [Malfait et al., 2010]. Lack of detailed clinical information from later childhood to adulthood in ATCS and lack of detailed clinical information from birth to early childhood in EDSKT and MCEDS have made it difficult to determine whether these disorders would be distinct clinical entities or a single clinical entity with variable expressions and with different presentations depending on the patients' ages at diagnosis. We present detailed clinical findings and courses of two additional unrelated patients, aged 2 years and 6 years, with EDSKT with a comprehensive review of 20 reported patients with D4ST1 deficiency, which supports the notion that these disorders constitute a clinically recognizable form of EDS. The disorder, preferably termed D4ST1-deficient EDS, is characterized by progressive multisystem fragility-related manifestations (joint dislocations and deformities, skin hyperextensibility, bruisability, and fragility; recurrent large subcutaneous hematomas, and other cardiac valvular, respiratory, gastrointestinal, and ophthalmological complications) resulting from impaired assembly of collagen fibrils, as well as various malformations (distinct craniofacial features, multiple congenital contractures, and congenital defects in cardiovascular, gastrointestinal, renal, ocular, and central nervous systems) resulting from inborn errors of development.


Assuntos
Anormalidades Múltiplas/genética , Síndrome de Ehlers-Danlos/enzimologia , Sulfotransferases/deficiência , Criança , Pré-Escolar , Pé Torto Equinovaro/cirurgia , Anormalidades Craniofaciais/genética , Criptorquidismo/genética , Análise Mutacional de DNA , Deficiências do Desenvolvimento/genética , Síndrome de Ehlers-Danlos/genética , Estudos de Associação Genética , Humanos , Masculino , Fenótipo , Sulfotransferases/genética
20.
Appl Spectrosc ; 65(5): 543-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21513598

RESUMO

We used Fourier transform infrared (FT-IR) spectroscopy to characterize silicon dioxide (SiO(2)) films on a 4H-SiC(0001) Si face. We found that the peak frequency of the transverse optical (TO) phonon in SiO(2) films grown on a 4H-SiC substrate agrees well with that in SiO(2) films grown on a Si substrate, whereas the peak frequency of the longitudinal optical (LO) phonon in SiO(2) films on a 4H-SiC substrate is red-shifted by approximately 50 cm(-1) relative to that in SiO(2) films on a Si substrate. We concluded that this red-shift of the LO phonon is mainly caused by a change in inhomogeneity due to a decrease in density in the SiO(2) films. Furthermore, cathodoluminescence (CL) spectroscopy results indicated that the channel mobility of the SiC metal-oxide-semiconductor field-effect transistor (MOSFET) decreases roughly in proportion to the increase in the intensity of the CL peak at 460 and 490 nm, which is attributed to the increase in the number of oxygen vacancy centers (OVCs). FT-IR and CL spectroscopies provide us with a large amount of data on OVCs in the SiO(2) films on a 4H-SiC substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...